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Abstract. Based on the tensor method, a q-analogue of the spin–orbit coupling is introduced in a
q-deformed Schrödinger equation, previously derived for a central potential. Analytic expressions
for the matrix elements of the representations j = � ± 1

2 are derived. The spectra of the harmonic
oscillator and the Coulomb potential are calculated numerically as a function of the deformation
parameter, without and with the spin–orbit coupling. The harmonic oscillator spectrum presents
strong analogies with the bound spectrum of a Woods–Saxon potential customarily used in nuclear
physics. The Coulomb spectrum simulates relativistic effects. The addition of the spin–orbit
coupling reinforces this picture.

1. Introduction

Particular interest has been devoted over the last decade to the quantum algebra suq(2) [1–
5]. This algebra is generated by three operators L+, L0 and L−, also called the q-angular
momentum components. They have the following commutation relations:[

L0, L±
] = ±L± (1)[

L+, L−
] = [2L0] (2)

where the quantity in square brackets is defined as

[n] = qn − q−n

q − q−1
. (3)

In the most general case the deformation parameter q is an arbitrary complex number and
physicists consider it as a phenomenological parameter [6]. When q = 1, the quantum algebra
suq(2), which defines a q-analogue of the angular momentum, reduces to the Lie algebra su(2)
of the ordinary angular momentum.

It is therefore interesting to investigate q-analogues of dynamical systems and to look for
new effects when q �= 1. This has been first achieved for the harmonic oscillator by using
algebraic methods, such as, for example, in [4, 5]. Taking, for example, q = exp(is) with
s a real, positive quantity, one can find that the distance between subsequent levels of the
q-harmonic oscillator decreases when the excitation increases. This is a desired property in
describing rotational bands of deformed nuclei [6]. However, the accidental degeneracy of the
harmonic oscillator persists in this treatment.

Another, more appealing way to introduce q-analogues of simple dynamical systems, is
through deriving a q-deformed Schrödinger equation. In this vein several attempts have been
made for the harmonic oscillator, such as, for example, in [7–9], for an attractive Coulomb
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potential [10, 11] or for both potentials [12, 13]. This procedure leads to the removal of the
accidental degeneracy whenever it exists.

Here we follow the approach of [13] where a q-deformed Schrödinger equation has been
derived for a general central potential and the exact solution for the particular cases of the
Coulomb and the harmonic oscillator potentials have been obtained. The crucial starting
point in [13] was the search for a Hermitian realization of the position, momentum and
angular momentum operators, all behaving as vectors with respect to suq(2) algebra. This
allowed the construction of an angular momentum operator entering the expression of the
Hamiltonian. Its components are different from the generators of the suq(2) algebra. In the
case of central potentials (spinless particles) the eigenfunctions of the q-deformed angular
momentum have been derived as q-deformed spherical harmonics and then closed expressions
for the eigenvalues of the q-deformed Schrödinger equation have obtained as a function of q.

This study is devoted to the derivation of a q-deformed spin–orbit coupling, consistent
with the approach of [13]. There an angular momentum �µ (µ = 0,±1) has been defined
as a q-vector with respect to the suq(2) algebra (1) and (2). By analogy, here we introduce
a spin operator σµ which is a q-vector in the algebra of Sµ analogous to (1) and (2). Next a
Hermitian spin operator �µ is constructed as a q-vector in the coproduct algebra of the total
angular momentum Jµ by using a unitary version of the universal R-matrix. The spin–orbit
interaction is defined as a q-scalar Hermitian operator in the space of Jµ and its matrix elements
are calculated exactly for the representations j = � ± 1

2 .
In previous applications of the q-deformed algebras to physical systems, such as, for

example, [14], the spin–orbit coupling is derived in a different way, based on a boson realization
of the soq(3) algebra [15]. There the spin operator does not form a vector in the coproduct
algebra. Accordingly the eigenvalues of the spin–orbit operator are different from ours.

In the next section we summarize the findings of [13]. In section 3 a q-analogue of the
spin–orbit coupling is derived. In section 4 we calculate numerically the spectra of the q-
harmonic oscillator and the q-Coulomb potentials without and with a spin–orbit contribution.
Physical implications are discussed. We stress that we do not aim at a particular fit of the
deformation parameter to describe some particular system but at modelling physical systems
through the suq(2) algebra. The final section is devoted to some closing remarks.

2. Spinless particles

In this section we follow closely [13]. The Hamiltonian entering the q-deformed Schrödinger
equation is

H = 1
2 �p2 + V (r). (4)

Here and in the following we shall take

h̄ = c = e = m = 1. (5)

The eigenfunctions of this Hamiltonian are

�(r, x0, ϕ) = rLuL(r)Y�m(q, x0, ϕ) (6)

where Y�m(q, x0, ϕ) are the normalized q-spherical harmonics (56) and (57) of [13], depending
of the deformation parameter q and x0 = cos θ . They are related to q-hypergeometric functions
[16].

The function rLuL(r) satisfies the following radial equation:{
1

2

[
−
(

∂2

∂r2
+

2

r

∂

∂r

)
+

1

r2
L(L + 1)

]
+ V0(r)

}
rLuL(r) = En�r

LuL(r) (7)
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where L is the non-negative solution of

L(L + 1) = [2�]

[2]

[2� + 2]

[2]
+ c2

� − c� (8)

with

c� = q2�+1 + q−2�−1

[2]
. (9)

It then follows that for the Coulomb potential

V0(r) = −1

r
(10)

the eigenvalue is

(En�)Coulomb = − 1

2(n + L + 1)2
(11)

and for the harmonic oscillator potential

V0(r) = 1
2 r

2 (12)

the eigenvalue is

(En�)oscillator = (2n + L + 3
2 ) (13)

n being in both cases the radial quantum number.
The spectrum is degenerate with respect to the magnetic quantum number m but the

accidental degeneracy typical for the undeformed equation is removed both for the Coulomb
and the harmonic oscillator potentials when q �= 1.

From equation (9) it follows that for � = 0 one has c� = 1. Thus for � = 0 the only
non-negative solution of (8) is L = 0, for all deformations. Consequently, the � = 0 levels are
independent of the deformation parameter both for the harmonic oscillator and the Coulomb
potentials. The centrifugal barrier disappears and taking V0(r) = 0 one reobtains the free-
particle case, as for undeformed equations.

For � �= 0 it is useful to distinguish between two different types of deformation parameter:

(i) q = es with s real. (14)

In this case one can easily prove that c� � 1 so that equation (8) has real solutions. Therefore, to
each non-zero � corresponds a positive L which is no longer an integer. We found it interesting
to use real q for the Coulomb potential, as shown in section 3. The other case is

(ii) q = eis with s real. (15)

In this case for small values of s one can find numerically that real positive values of L exist.
This case is applicable to the harmonic oscillator potential, because it leads to interesting
analogies of its spectrum with a known case in nuclear physics, as discussed in section 4.

3. Derivation of the spin–orbit coupling

Now the Hamiltonian (4) contains a potential of the form

V = V0(r) + α(r)VS–O (16)

where V0 is the central potential from the previous section, VS–O is the spin–orbit operator
and α is a function which vanishes when r → ∞. In atomic or nuclear physics the spin–
orbit operator is the ordinary scalar product between the spin and angular momentum. In the
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deformed case considered here we aim at introducing a similar definition. However, there are
inherent differences due to the more complex nature of the q-deformed vector operators, as
explained below.

By analogy to the q-angular momentum Lµ one can define a spin operator Sµ through
relations similar to (1)–(3). The operators Lµ and Sµ satisfy the Hermiticity relations

L
†
±,0 = L±,0 S

†
±.0 = S±,0. (17)

However, the situation is different from the su(2) case because neither Lµ nor Sµ form a
vector with respect to their suq(2) algebra. In an suq(2) algebra a q-vector of components
Vi (i = 0,±1), is defined through the relations [13]

(L±Vi − qiViL±)qL0 =
√

[2]Vi±1 [L0, Vi] = iVi (18)

where one takes V±2 = 0 whenever it appears.
However, as in [13], instead of Lµ we have to use �µ defined as

�±1 = ∓
√

1

[2]
q−L0L± (19)

�0 = 1

[2]

(
qL+L− − q−1L−L+

)
. (20)

These quantities form a vector in the suq(2) algebra, i.e. satisfy the relations (18) as can easily
be checked. By analogy to (19) and (20) we introduce a vector of components σµ in the suq(2)
algebra having Sµ as generators

σ±1 = ∓
√

1

[2]
q−S0S± (21)

σ0 = 1

[2]

(
qS+S− − q−1S−S+

)
. (22)

In the space generated by Sµ the quantities Lµ are scalars and vice versa, which implies
that

[σµ,�µ′ ] = 0. (23)

In dealing with the spin–orbit operator we have to also introduce the coproduct algebra of Lµ

and Sµ. The generators Jµ of this algebra are defined as

J± = L±q−S0 + S±qL0 (24)

J0 = L0 + S0. (25)

One can directly prove that they satisfy commutation relations of type (1) and (2). One can
also prove that �µ are the components of a vector in the coproduct algebra, which means that
they satisfy relations analogous to (18) with Jµ instead of Lµ. On the other hand, σµ do not
fulfil such relations. However, instead of σµ one can introduce another vector �µ satisfying
relations of type (18) with Jµ instead of Lµ. This can be achieved by using the universal
R-matrix. In fact, we need both the R-matrix and its conjugate [17]. The latter is denoted here
by R.

The R-matrix or its conjugate has the property that it replaces q by q−1 in definition (24),
i.e. one has

R
(
L±q−S0 + S±qL0

) = (
L±qS0 + S±q−L0

)
R (26)
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and

R(L±q−S0 + S±qL0
) = (

L±qS0 + S±q−L0
)R. (27)

The operator (25) remains unchanged or, in other words,

[R, J0] = 0 [R, J0] = 0. (28)

We found it convenient to use the R-matrix as defined in [18]. For s = 1
2 it contains only two

terms

R = q2L0S0 +
λ√
q
L−S+ (29)

where

λ = q − 1/q. (30)

One can check that the expression (29) satisfies (26). The conjugate R of R takes the form

R = q−2L0S0 − λ
√
qL+S− (31)

and it satisfies equation (27). Using (29) and (31) one defines [19]

�µ(R) = R−1σµR (32)

and

�µ(R) = R−1σµR. (33)

The operator (32) with µ = 0,±1 forms a vector in the space of the coproduct algebra. The
proof is given in appendix A. In a similar way one can prove that the operator (33) is also a
vector in the coproduct algebra.

Note that none of the above operators is Hermitian but each µ-component of one is related
to the corresponding component of the other through the relation

�+
µ(R) =

(
− 1

q

)µ

�−µ(R) (34)

relating operators associated with R and R. To overcome the lack of Hermiticity one can make
use of the unitary matrix Ru introduced in [17] as

Ru = 1

N

(√
qR +

1√
q

R
)

(35)

where N = ql+1/2 + q−l−1/2 is a normalization factor. With the help of Ru one can define the
vector

�µ(Ru) = R†
uσµRu (36)

the components of which are Hermitian operators, i.e. satisfy the relation

�†
µ(Ru) =

(
− 1

q

)µ

�−µ(Ru). (37)

Now we can define a Hermitian spin–orbit operator as

VS–O = 1
2
��(Ru) �� + 1

2
�� ��(Ru) (38)

where the scalar product between the q-vectors ��(Ru) and �� is defined as in [13]

��(Ru) �� =
(

− 1

q

)µ

�µ(Ru)�−µ (39)
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with an implied summation over µ. Using (36) one can rewrite (38) as

VS–O = 1
2 (R

+
u �σRu

�� + Hermitian conjugate)

= 1
2 (R

+
u �σRu

�� + ��R+
u �σRu). (40)

Let us consider the first term in the right-hand side of (40) where Ru is replaced by its definition
(35)

1
2R

+
u �σRu

�� = 1

2N2

(√
qR+ +

1√
q

R+

)
�σ
(√

qR +
1√
q

R
)

��. (41)

Here we look for example at the term (
√
qR+ + 1√

q
R+)�σ√

qR, which can be rewritten by

inserting the identity RR−1 = 1 in front of �σ and also using the property R+R = 1. This gives(√
qR+ +

1√
q

R+

)
�σ√

qR �� = qR+R ��(R) �� + ��(R) �� = (1 + qR+R) ��(R) ��. (42)

In a similar way the other term of (41) becomes(√
qR+ +

1√
q

R+

)
�σ 1√

q
R �� =

(
1 +

1

q
R+R

)
��(R) �� (43)

where we have used RR−1 = 1 and R+R = 1. Thus

1
2R

+
u �σRu

�� = 1

2N2

[
(1 + qR+R) ��(R) �� +

(
1 +

1

q
R+R

)
��(R) ��

]
. (44)

One can see that in the above relation the vectors �� and �� are next to each other as they should
be in a q-scalar product. For the second term of (40) we have

1
2
��R+

u �σRu = 1

2N2
��
(√

qR+ +
1√
q

R+

)
�σ
(√

qR +
1√
q

R
)

(45)

or using

R+ = R−1 R+ = R−1 (46)

in the manner explained above, we obtain

1
2
��R+

u �σRu = 1

2N2

[
�� ��(R)(1 + qR+R) + �� ��(R)

(
1 +

1

q
R+R

)]
. (47)

Thus the spin–orbit interaction takes the form

VS–O = 1

2N2

[
(1 + qR+R) ��(R) �� +

(
1 +

1

q
R+R

)
��(R) ��

+ �� ��(R)(1 + qR+R) + �� ��(R)

(
1 +

1

q
R+R

)]
(48)

i.e. it contains the operators
��(R) �� ��(R) �� �� ��(R) �� ��(R) R+R R+R. (49)

These are scalars because they commute with Ji (i = 0,±1). In particular, for the last two
operators, the commutation with J0 follows directly from (28). To prove the commutation
with J± we have to use equations (26) and (27). For example, in the case of R+R we have

R+R
(
L±q−S0 + S±qL0

) = R+
(
L±qS0 + S±q−L0

)
R

= R+
(
L±qS0 + S±q−L0

)RR+R

= R+R(L±q−S0 + S±qL0
)
R+R

= (
L±q−S0 + S±qL0

)
R+R (50)
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where after the second equality sign alternative forms of equations (46) have been used.
We can obtain the expectation value ofVS–O for states of total angular momentum j = �± 1

2
by calculating the expectation values of the scalars (49). The simplest way is to use the state
of maximum weight with m = j . For j = l + 1

2 this state reads

ψ�+1/2,�+1/2 = Y��χ1/2 (51)

where Y�m are defined by equations (56) and (57) of [13] and χms
, with ms = ± 1

2 , is the s = 1
2

spinor. In this case one can show that the last two operators of the list (49) have the following
expectation values:

〈R+R〉�+1/2 = q2l 〈R+R〉�+1/2 = q−2l . (52)

For j = � − 1
2 and m = j the wavefunction is

ψ�−1/2,�−1/2 = 1√
[2� + 1]

(√
[2�]

q
Y��χ−1/2 − qlY�,�−1χ1/2

)
. (53)

In this case the last two operators of (49) have the following expectation values:

〈R+R〉�−1/2 = q−2l−2 〈R+R〉�−1/2 = q2l+2. (54)

Both for j = � + 1
2 and j = �− 1

2 the proof is similar to that given in appendix B for the other
scalars of (49). Using all of these expectation values in the case where j = � + 1

2 one can
easily show that the expectation value of VS–O is

E�+1/2 = [2�]

[2]2

ql+5/2 + q−l−5/2

ql+1/2 + q−l−1/2
. (55)

In a similar but somewhat longer way the following expectation value of VS–O is obtained for
j = � − 1

2 :

E�−1/2 = − [2l + 2]

[2]2

ql−3/2 + q−l+3/2

ql+1/2 + q−l−1/2
. (56)

The proof of equations (55) and (56) is given in appendix B. In the limit q → 1 E�+1/2 and
E�−1/2 recover the expectation values of the non-deformed spin–orbit coupling �s · ��, namely
�/2 for j = � + 1

2 and −(� + 1)/2 for j = � − 1
2 , respectively.

4. Numerical results

In figure 1 we represent the eigenvalues (11) of the Coulomb potential as a function of s (real),
when q = es (equation (14)). One can see that every En� increases with s when � �= 0, the
reason being that one has L > � when one chooses q to be real. Therefore, at a given q �= 1
one has

E2p > E2s E3d > E3p > E3s etc. (57)

These inequalities are similar to those satisfied by the eigenvalues of the Klein–Gordon equation
for which one has E(n, �) < E(n − 1, � + 1) for fixed n + � + 1 [20, 21]. One expects similar
inequalities to also be satisfied by the eigenvalues of the spinless Bethe–Salpeter (or Herbst)
equation for a particle in an attractive Coulomb potential [22]. In fact, as long as Zα < π/2
where Z is the charge and α is the fine-structure constant, the expansion of the eigenvalues of
the Herbst equation coincides with that of the Klein–Gordon equation [23]. Thus the results
shown in figure 1 suggest that the splitting found for q �= 1 can simulate a relativistic kinematic
effect.
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Figure 1. Eigenvalues (En�)Coulomb of equation (11) as a function of s for a deformation parameter
of type (14). The identification with the spectroscopic notation is E10 = E1s, E20 = E2s, E11 =
E2p, E30 = E3s, E21 = E3p and E12 = E3d.

Figure 2. Eigenvalues (En�)oscillator of equation (13) as a function of s for a deformation parameter
of type (15). The identification with the spectroscopic notation is E00 = E1s, E01 = E1p, E02 =
E1d, E10 = E2s, E03 = E1f , E11 = E2p, E04 = E1g and E12 = E2d.

In figure 2 the eigenvalues (13) of the harmonic oscillator potential are plotted as a function
of s, where s and the deformation parameter are related by equation (15). This choice is based
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Figure 3. (En�)Coulomb +αE�±1/2 with α = 0.001 as a function of s for a deformation parameter
of type (14).

on the fact that it implies L < �, so that in the interval 0 < s < 0.13 the q-deformed spectrum
satisfies inequalities as

E1d < E2s E1f < E2p E1g < E2d etc (58)

which correspond to a potential with a form which is between a harmonic oscillator and a
square-well potential. In nuclear physics [24] the standard form is the Woods–Saxon potential

V (r) = Vf (r) f (r) =
[

1 + exp

(
r − R0

a

)]−1

(59)

depending on three parameters V , R0 and a. In the limit a → 0 one approaches a square-well
potential of radius R0 and depth V . The bound spectrum of a potential of type (59) satisfies
the inequalities (58) (see figures 2–23 of [24]).

Next we add the spin–orbit contribution. To single out the role of VS–O here we choose
α to be a constant. In figure 3 we plot (En�)Coulomb + αE�±1/2 as a function of s, where s is
related to q by equation (14). The levels are labelled by n�j , where � is the value of the angular
momentum at q = 1 and j = � ± 1

2 . With α > 0 one always has j = � + 1
2 levels above the

j = � − 1
2 levels due to equations (55) and (56). For convenience we choose α = 0.001. We

therefore see that the energies increase with increasing j for fixed � and increasing n or � for
fixed j . Such a pattern corresponds to solutions of the Dirac equation for a Coulomb potential
plus a perturbation which removes the twofold degeneracy of the eigenvalues for a Coulomb
field. In [25] it has been shown that for a Dirac particle moving in a purely attractive potential
the level sequence is

2p3/2 > 2p1/2 > 2s1/2 (60)

3d5/2 > 3d3/2 > 3p3/2 > 3p1/2 > 3s1/2 etc (61)

which here is the case when s > 0.11 for the first and when s > 0.17 for both rows of
inequalities, respectively. Such sequences are expected for alkaline atoms.
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Figure 4. (En�)oscillator +αE�±1/2 with α = −0.1 as a function of s for a deformation parameter
of type (15). The ground state energy E1s1/2 = 1.5, which is independent of s, is not drawn.

In a similar way we add the spin–orbit coupling (55) and (56) to (En�)oscillator of
equation (13) and in figure 4 we plot (En�)oscillator+αE�±1/2 as a function of s, where s is related
to q via equation (15). For the sake of the discussion here we choose α = −0.1. The addition
of a spin–orbit coupling to (En�)oscillator brings us a picture which is even closer to the single-
particle spectra encountered in nuclear physics. Provided α is negative the level sequence of
figure 4 is similar to that of the neutron single-particle spectrum (see, e.g., figures 2–30 of
[24]). Also Hartree–Fock calculations based on effective density-dependent nucleon–nucleon
interactions [26] give a similar spectrum.

5. Summary

We have constructed a q-analogue of the spin–orbit coupling used in a q-deformed Schrödinger
equation previously derived for a central potential. The spin–orbit coupling is aq-scalar product
between the angular momentum �µ and the spin operator �µ both defined a q-vectors in the
coproduct algebra of the generators Jµ. The spin operator has been obtained with the help
of a Hermitian form of the universal R-matrix. Accordingly, our result is new and entirely
different from previous work on spin–orbit coupling.

Numerically, we have shown that the q-deformed Schrödinger equation for a spinless
particle in a Coulomb field has a spectrum which simulates relativistic effects. The removal of
the accidental degeneracy by a real deformation of the type q = es with s > 0 leads to a level
sequence similar to that of the Klein–Gordon or of the Herbst equations. With the addition of
a spin–orbit coupling the level sequence is close to that of alkaline atoms.

The q-deformed Schrödinger equation for a spinless particle in a harmonic oscillator
potential has a spectrum similar to that of the bound spectrum of a Woods–Saxon potential.
The deformation is of type q = eis , with s real and positive. The addition of a spin–orbit
coupling leads to a spectrum similar to single-particle spectra of nuclei. It would be interesting
to pursue this study in a more quantitative way.
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Appendix A

In this appendix we prove that the operators

�µ(R) = R−1σµR (A1)

with µ = 0,±1 form a q-vector in the coproduct algebra of Jµ defined by (24) and (25). A
vector is an irreducible tensor of rank λ = 1. The proof given below is valid for any λ. Let
us consider a q-tensor Uλ

µ which is irreducible in the space generated by Sµ. By definition it
must obey the following relations [27]:

[S0, U
λ
µ] = µUλ

µ (A2)

(S±Uλ
µ − qµUλ

µS±)qS0 =
√

[λ ∓ µ][λ ± µ + 1]Uλ
µ. (A3)

The operator σµ defined by (21) and (22) is an example of Uλ
µ with λ = 1. In the composite

system of the coproduct algebra of Jµ a tensor Wλ
µ defined by

Wλ
µ = R−1Uλ

µR (A4)

is irreducible if it satisfies relations analogous to (A2) and (A3) but with Jµ instead of Sµ.
Suppose Wλ

µ satisfies such relations. Below we show that they are compatible with (A2) and
(A3).

The validity of

[J0,W
λ
µ] = µWλ

µ (A5)

is immediate due to the independence of J0 of q, see equation (25). Using (24) the analogue
of (A3) becomes(
(L±q−S0 + S±qL0)R−1Uλ

µR − qµR−1Uλ
µR(L±q−S0 + S±qL0)

)
qL0+S0

=
√

[λ ∓ µ][λ ± µ + 1]R−1Uλ
µ±1R (A6)

for Wλ
µ defined by (A4). We multiply the above equation by R on the left and by R−1 on the

right and use equation (26) to shift the R from the left to the right of L±q−S0 + S±qL0 . Using
the identity RR−1 = 1 we obtain(
(L±qS0 + S±q−L0)Uλ

µ − qµUλ
µ(L±qS0 + S±q−L0)

)
qL0+S0 =

√
[λ ∓ µ][λ ± µ + 1]Uλ

µ±1.

(A7)

Next we use

qS0Uλ
µ = qµUλ

µq
S0 (A8)

which is a consequence of (A2) and

q−L0Uλ
µ = Uλ

µq
−L0 (A9)

which is a consequence of (23). These relations help to cancel out two of the four terms in
the left-hand side of (A7). The resulting equation is (A3) which proves that (A6) is correct.
Identifying Wλ

µ with �µ, i.e. setting λ = 1 in (A5) and (A6) we obtain equations of type (18)
for �µ, i.e. we prove that �µ is a q-vector in the coproduct algebra Jµ.
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Appendix B

In this appendix we show how formulae (55) and (56) can be obtained. For this purpose we need
the expectation values of the scalars (49). In order to calculate explicitly the expectation value
of the first and third scalar products from the list (49) we need the operators �µ(µ = 0,±1),
which can be obtained by introducing equation (29) in (32). This gives

�1(R) = q−2L0σ1

�0(R) = σ0 − [2]λ�−1σ1

�−1(R) = q2L0σ−1 − [2]λqL0�−1q
L0σ0 + [2]λ2qL0�2

−1q
L0σ1.

(B1)

To calculate the expectation value of the second and fourth scalar products (49) we need

�1(R) = q2L0σ1 − [2]λqL0�1q
L0σ0 + [2]λ2qL0�2

1q
L0σ−1

�0(R) = σ0 − [2]λ�1σ−1

�−1(R) = q−2L0σ−1

(B2)

which have been derived from the formulae (31) and (33).
For the purpose of this appendix, as an example, we first calculate the expectation value

of the third scalar product from the list (49). This is

�� ��(R) = − 1

q
�1�−1(R) + �0�0(R) − q�−1�1(R). (B3)

From this expression only the first and second terms bring a non-vanishing contribution to the
expectation value when j = � + 1

2 . Looking at the expression of �−1(R) above we see that
only the second term contributes so that −1/q�1�−1(R) has a non-vanishing contribution due
to

[2]

q
λ�1q

L0�−1q
L0σ0. (B4)

Using the definition (19) one can rewrite this operator as

−λ

q
L+L−σ0. (B5)

At this stage we need the relation

L+L−Y�m(q, x0, ϕ) = [� + m][� − m + 1]Y�m(q, x0, ϕ). (B6)

For the particular case of m = � we have

L+L−Y��(q, x0, ϕ) = [2�]Y��(q, x0, ϕ). (B7)

The relation (B6) has a spin counterpart

S+S−χms
= [s + ms][s − ms + 1]χms

. (B8)

Together with (22) this gives

�0χ1/2 = σ0χ1/2 = q

[2]
S+S−χ1/2 = q

[2]
χ1/2. (B9)

Altogether we obtain

− 1

q
�1�−1(R)ψ�+1/2,�+1/2 = −λ[2�]

[2]
ψ�+1/2,�+1/2. (B10)
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According to (B1) the non-zero contribution of �0�0(R) acting on ψ�+1/2,�+1/2 comes from
�0σ0. Using �0 as defined by (20) and the relation (B6) we obtain

�0Y�� = q

[2]
[2�]Y��. (B11)

Together with (B9) this gives

�0�0(R)ψ�+1/2,�+1/2 = q2

[2]2
[2�]ψ�+1/2,�+1/2. (B12)

The addition of (B10) and (B12) leads to the following expectation value:

〈 �� ��(R)〉�+1/2 = q−2

[2]2
[2l]. (B13)

In the same representation, i.e. j = � + 1
2 the expectation value of ��(R) �� is even easier to

obtain inasmuch as only the term �0(R)�0 contributes. Using the result (B12) one finds

〈 ��(R) ��〉�+1/2 = q2

[2]2
[2l]. (B14)

In a similar manner as above we obtain

〈 ��(R) ��〉�+1/2 = q−2

[2]2
[2l] (B15)

and

〈 �� ��(R)〉�+1/2 = q2

[2]2
[2l]. (B16)

By using the expectation values (B13)-(B16), together with (52) and (54) one can calculate
the expectation value of (48) which leads straightforwardly to (55).

For the representation j = � − 1
2 , in a similar but longer way one obtains

〈 ��(R) ��〉�−1/2 = 〈 �� ��(R)〉�−1/2 = − q2

[2]2
[2l + 2]

〈 ��(R) ��〉�−1/2 = 〈 �� ��(R)〉�−1/2 = −q−2

[2]2
[2l + 2].

(B17)

The relations (52), (54) and (B17) lead to the expectation value (56).
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